Vorhersage von Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die früheren Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 (n1) OR n (2 - a) a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu beurteilen und zwischen den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die erforderlichen kurzfristigen Prognosen. Simple Vs. Exponential Moving Averages Moving-Mittelwerte sind mehr als das Studium einer Folge von Zahlen in aufeinanderfolgender Reihenfolge. Frühe Praktiker der Zeitreihenanalyse beschäftigten sich tatsächlich eher mit einzelnen Zeitreihenzahlen als mit der Interpolation dieser Daten. Interpolation. In Form von Wahrscheinlichkeitstheorien und - analyse, kam viel später, als Muster entwickelt wurden und Korrelationen entdeckt. Einmal verstanden, wurden verschiedene geformte Kurven und Linien entlang der Zeitreihen gezogen, um zu prognostizieren, wo die Datenpunkte gehen könnten. Diese werden nun als grundlegende Methoden, die derzeit von technischen Analyse-Händler verwendet. Charting-Analyse kann bis ins 18. Jahrhundert Japan zurückverfolgt werden, aber wie und wann bewegte Durchschnitte wurden zuerst auf Marktpreise angewendet bleibt ein Geheimnis. Es wird allgemein verstanden, dass einfache Bewegungsdurchschnitte (SMA) lange vor exponentiellen Bewegungsdurchschnitten (EMA) verwendet wurden, da EMAs auf SMA-Gerüsten aufgebaut sind und das SMA-Kontinuum für Plotter und Verfolgungszwecke leichter verstanden wurde. (Möchten Sie ein wenig Hintergrund lesen Check out Moving Averages: Was sind sie) Simple Moving Average (SMA) Einfache gleitende Durchschnitte wurden die bevorzugte Methode für die Verfolgung Marktpreise, weil sie schnell zu berechnen und leicht zu verstehen sind. Frühe Marktpraktiker arbeiteten ohne den Gebrauch der ausgefeilten Diagrammmetriken, die heute benutzt werden, also verließen sie hauptsächlich auf Marktpreisen als ihre alleinigen Führer. Sie berechneten die Marktpreise von Hand, und graphed diese Preise, um Trends und Marktrichtung zu bezeichnen. Dieser Prozeß war sehr langwierig, erweist sich aber mit der Bestätigung weiterer Untersuchungen als recht rentabel. Um einen 10-tägigen einfachen gleitenden Durchschnitt zu berechnen, addieren Sie einfach die Schlusskurse der letzten 10 Tage und dividieren durch 10. Der gleitende 20-Tage-Durchschnitt wird berechnet, indem die Schlusskurse über einen Zeitraum von 20 Tagen addiert und durch 20 dividiert werden bald. Diese Formel ist nicht nur auf Schlusskurse basiert, sondern das Produkt ist ein Mittel der Preise - eine Teilmenge. Bewegungsdurchschnitte werden als bewegt bezeichnet, weil sich die in der Berechnung verwendete Gruppe von Preisen gemäß dem Punkt auf dem Diagramm bewegt. Das bedeutet, dass alte Zeiten zugunsten neuer Schlusskurstage fallengelassen werden, so dass immer eine neue Berechnung erforderlich ist, die dem Zeitrahmen des durchschnittlichen Beschäftigten entspricht. So wird ein 10-Tage-Durchschnitt neu berechnet, indem der neue Tag hinzugefügt und der 10. Tag fallen gelassen wird, und der neunte Tag wird am zweiten Tag fallen gelassen. Exponential Moving Average (EMA) Exponential Moving Average (EMA) Der exponentielle gleitende Durchschnitt wurde verfeinert und seit den sechziger Jahren aufgrund früherer Experimente mit dem Computer weiter verbreitet. Die neue EMA würde sich mehr auf die jüngsten Preise konzentrieren als auf eine lange Reihe von Datenpunkten, da der einfache gleitende Durchschnitt erforderlich ist. Aktuelle EMA ((Preis (aktuelle) - vorherige EMA)) X Multiplikator) vorherige EMA. Der wichtigste Faktor ist die Glättungskonstante, die 2 (1N) mit N die Anzahl der Tage. Eine 10-Tage-EMA 2 (101) 18,8 Dies bedeutet, dass ein 10-Perioden-EMA den jüngsten Preis 18,8, ein 20-Tage EMA 9,52 und 50-Tage EMA 3,92 Gewicht auf den letzten Tag gewichtet. Die EMA arbeitet, indem sie die Differenz zwischen dem Preis der gegenwärtigen Perioden und der vorherigen EMA gewichtet und das Ergebnis der vorherigen EMA hinzugefügt hat. Je kürzer die Periode, desto mehr Gewicht auf den jüngsten Preis angewendet. Anpassungslinien Nach diesen Berechnungen sind Punkte aufgetragen und zeigen eine passende Linie. Anpassungen über oder unter dem Marktpreis bedeuten, dass alle gleitenden Durchschnitte nacheilende Indikatoren sind. Und werden hauptsächlich für folgende Trends verwendet. Sie funktionieren nicht gut mit Reichweitenmärkten und Perioden der Überlastung, weil die passenden Linien nicht einen Trend aufgrund eines Mangels an offensichtlich höheren Höhen oder niedrigeren Tiefs bezeichnen. Plus, passende Linien neigen dazu, konstant bleiben, ohne Andeutung der Richtung. Eine aufsteigende Montagelinie unterhalb des Marktes bedeutet eine lange, während eine sinkende Montagelinie oberhalb des Marktes ein kurzes bedeutet. (Für eine vollständige Anleitung, lesen Sie unsere Moving Average Tutorial.) Der Zweck der Verwendung eines einfachen gleitenden Durchschnitt ist es, zu erkennen und zu messen Trends durch Glättung der Daten mit Hilfe von mehreren Gruppen von Preisen. Ein Trend wird entdeckt und in eine Prognose hochgerechnet. Es wird davon ausgegangen, dass sich die bisherigen Trendbewegungen fortsetzen werden. Für den einfachen gleitenden Durchschnitt kann ein langfristiger Trend gefunden und gefolgt werden, viel einfacher als eine EMA, mit der vernünftigen Annahme, dass die Anpassungslinie stärker als eine EMA-Linie aufgrund der längeren Fokussierung auf Mittelpreise halten wird. Eine EMA wird verwendet, um kürzere Trendbewegungen zu erfassen, aufgrund der Fokussierung auf die jüngsten Preise. Durch dieses Verfahren soll eine EMA jede Verzögerung in dem einfachen gleitenden Durchschnitt reduzieren, so dass die Anpassungslinie die Preise näher umschließt als ein einfacher gleitender Durchschnitt. Das Problem mit der EMA ist dies: Seine anfällig für Preisunterbrechungen, vor allem auf schnellen Märkten und Zeiten der Volatilität. Die EMA funktioniert gut, bis die Preise die passende Linie brechen. Bei höheren Volatilitätsmärkten könnte man erwägen, die Länge des gleitenden Durchschnittsbegriffs zu vergrößern. Man kann sogar von einer EMA zu einer SMA wechseln, da die SMA die Daten viel besser macht als eine EMA aufgrund ihres Fokus auf längerfristige Mittel. Trendindikatoren Als Nachlaufindikatoren dienen die gleitenden Mittelwerte als Unterstützungs - und Widerstandslinien. Wenn die Preise unter einer 10-tägigen Anpaßlinie in einem Aufwärtstrend brechen, sind die Chancen gut, dass der Aufwärtstrend schwächer werden kann, oder zumindest kann sich der Markt konsolidieren. Wenn die Preise über einen 10 Tage gleitenden Durchschnitt in einem Abwärtstrend brechen. Kann der Trend abnehmen oder konsolidieren. Verwenden Sie in diesen Fällen einen 10- und 20-Tage gleitenden Durchschnitt zusammen, und warten Sie, bis die 10-Tage-Linie über oder unter der 20-Tage-Linie zu überqueren. Dies bestimmt die nächste kurzfristige Richtung für die Preise. Für längere Zeiträume, beobachten Sie die 100- und 200-Tage gleitende Mittelwerte für längerfristige Richtung. Wenn man beispielsweise den 100- und 200-Tage-Gleitdurchschnitt verwendet, wenn der 100-Tage-Gleitende Durchschnitt unter dem 200-Tage-Durchschnitt überschreitet, nennt man ihn das Todeskreuz. Und ist sehr bärisch für die Preise. Ein 100-Tage-Gleitender Durchschnitt, der über einen 200-Tage gleitenden Durchschnitt kreuzt, wird das goldene Kreuz genannt. Und ist sehr bullisch für die Preise. Es spielt keine Rolle, wenn ein SMA oder eine EMA verwendet wird, weil beide Trend-folgende Indikatoren sind. Seine nur in der kurzfristigen, dass die SMA hat geringfügige Abweichungen von seinem Pendant, die EMA. Fazit Die gleitenden Durchschnitte sind die Grundlage der Diagramm - und Zeitreihenanalyse. Einfache gleitende Durchschnitte und die komplexeren exponentiellen gleitenden Durchschnitte helfen, den Trend zu visualisieren, indem sie Preisbewegungen ausgleichen. Technische Analyse wird manchmal als Kunst und nicht als Wissenschaft bezeichnet, die beide Jahre in Anspruch nehmen. (Weitere Informationen finden Sie in unserem Technical Analysis Tutorial.)
No comments:
Post a Comment